Aerosp Med Hum Perform. 2024 Feb 1;95(2):69-78. doi: 10.3357/AMHP.6313.2024.


INTRODUCTION: Following a transition from microgravity to a gravity-rich environment (e.g., Earth, Moon, or Mars), astronauts experience sensorimotor impairment, primarily from a reinterpretation of vestibular cues, which can impact their ability to perform mission-critical tasks. To enable future exploration-class missions, the development of lightweight, space-conscious assessments for astronauts transitioning between gravity environments without expert assistance is needed.METHODS: We examined differences in performance during a two-dimensional (2D) hand-eye multidirectional tapping task, implemented in augmented reality in subjects (N = 20) with and without the presence of a vestibular-dominated sensorimotor impairment paradigm: the binaural bipolar application of a pseudorandom galvanic vestibular stimulation (GVS) signal. Metrics associated with both the impairment paradigm and task performance were assessed.RESULTS: Medial-lateral sway during balance on an anterior-posterior sway-referenced platform with eyes closed was most affected by GVS (effect size: 1.2), in addition to anterior-posterior sway (effect size: 0.63) and the vestibular index (effect size: 0.65). During the augmented reality task, an increase in time to completion (effect size: 0.63), number of misses (effect size: 0.52), and head linear accelerations (effect size: 0.30) were found in the presence of the selected GVS waveform.DISCUSSION: Findings indicate that this multidirectional tapping task may detect emergent vestibular-dominated impairment (near landing day performance) in astronauts. Decrements in speed and accuracy indicate this impairment may hinder crews’ ability to acquire known target locations while in a static standing posture. The ability to track these decrements can support mission operations decisions.Allred AR, Weiss H, Clark TK, Stirling L. An augmented reality hand-eye sensorimotor impairment assessment for spaceflight operations. Aerosp Med Hum Perform. 2024; 95(2):69-78.

PMID:38263106 | DOI:10.3357/AMHP.6313.2024