J Biochem Mol Toxicol. 2013 Jan;27(1):69-76. doi: 10.1002/jbt.21452. Epub 2013 Jan 7.

ABSTRACT

Particulate matter may promote cardiovascular disease, possibly as a consequence of its oxidative potential. Studies using susceptible animals indicate that particulate matter aggravates atherosclerosis by increasing lipid/macrophage content in plaques. Macrophage lipid uptake requires oxidized low-density lipoprotein and scavenger receptors; same receptors are involved in particulate matter uptake. We studied in vitro particulate matter potential to oxidize low-density lipoproteins and subsequent cell uptake through scavenger receptors. Particulate matter-induced low-density lipoproteins oxidation was evaluated by the thiobarbituric acid assay. Binding/internalization was tested in wild type and scavenger receptor-transfected Chinese hamster ovary cells, and in RAW264.7 cells using fluorescently labeled low-density lipoproteins. Dose-dependent binding/internalization only occurred in scavenger receptor-transfected Chinese hamster ovary cells and RAW264.7 cells. Competition binding/internalization using particles showed that particulate matter induced decreased binding (∼50%) and internalization (∼70%) of particle-oxidized low-density lipoproteins and native low-density lipoproteins. Results indicate that particulate matter was capable of oxidizing low-density lipoproteins, favoring macrophage internalization, and also altered scavenger and low-density lipoproteins receptor function.

PMID:23297186 | PMC:PMC4345123 | DOI:10.1002/jbt.21452